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SUMMARY

A previous report gave calculetions for the pressure distri-
bution over thin oblique airfolls at supersonic spesd. The present
report extends the calculations to subsonic speeds.

It is found that the flows again can be obtained by the supeir-
positicn of elementary conlcael flow fields. In the cass of the
Bwopt-back wing the pressure distridutions remain qualitatively
similar at subsonic and supersonic speeds. Thus a distribution
similar to the Acksret type of distribution sppears on the root
sections of the swept—back wing at M = 0. The resulting positive
pressure drag on the rcot section is balanced by negatlive drags on
outbcard sections. : . .

INTRODUCTION

So fer as is known, attempts to extend sirfoll pressure—
distribution calculations to three-dimensional flow have been
confined to cases of thin lifting surfaces. It has gensrally been
assumed that the component of the pressure dlstribution esrising from
the thickness of the airfoil will be but little affected by the
finite span, or aspect ratio, of the wing. This supposition is
borne out by the known Incompressible—flow solutions for flat
ellipsolds. These solutions show that the usual variations of
aspect ratlo produce small effects.

Compressible~flow theory shows however that the effects of
plan form become more pronounced at higher speeds. The theory
indicates a progressive reduction of the equivelent aspect ratio as
the Mach number approaches 1.0. Hence at these speeds the three—
dimensional character of the flow can no longer be neglected. Of
particular interest are the deviations from two-dimensional flow neer
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the root sections of a swept-back wing, since the adverse effects of
compregslbility may arise first in this region.

In the present report three—dimensional flows are obtained from
a distribution of "pressure scurces" in the chord plane of the airfoil.
The shéapes thus obtained aze symmetricel airfoils at zero lift.
The calculations are simplified by considering airfoils composed of
conlcal or cylindrical surfaces. TIn these cases the sourceas cen be
arrenged into lines of uniform strength following the generators of
the surface. The relstion betwsen the strengths of the line sources
and the shape of the ailrfoll is the same as In refersnce 1, that is,
each line source produces a deflection of the streamlines crossing
over the source. The pressure field of the line source again can be
represented by systems of straight rays of equal pressure (iscbars)
radiating from the ends of the line source,

In general, the present development follows closely that of
reference 1 and the reader should consult that report for addl-
tional details of the method. The solutions are glven explicitly
for M =0 but are extended to other Mach numbers by the well-known
Prandtl transformation.

THE OBLIQUE LINE SOURCE

It is well known that an individual velocity component of a
potentlal flow will satisfy the same differential equation as the
potential. In the approximations of the thin-airfoil thsory the
pressure depends only on the individual component u, that is,

2u
R F - (1)

wvhile the slope of the surlace depende only on the individual
component w, that is

az - X
dx ¥V (2)

(See appendix for symbols.) Hence in the thin-airfoil theory 1t is
of ten more convenient to deal directly with the veloclitlies u end

w a8 solutions of laplace's equation than to derive these components
from a veloclity potential .

Since 1 1ig proportional to the pressure, e solution of Laplace's
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equation can represent directly the pressure distribution, hence
the term "pressure potential.” In this terminology, the fundamental
solution :

= % =
R e (3)

represents a uplt polnt source of pressure rather than a point
source of f£luid. :

To get the effect of a row of sources, or a line source, along
the X-axis between the pointe & and b 1t is necessary to integra.‘be
equation (3):

b
= = sinh—t _%x - gipp—™ X8 (%)
‘.éj ;7 (x—t) B+y=+2® N yo+z2

The pressure field of the finite line source thus consists of the
sum of two conical pressure fields radiating from the ends of the
line source. (See fig. 1.) In the supersonic case (reference 1)
the radial lsobars forming the conical field were confined to ths
dovmstream Mach cone. Here however the iscbars extend over the
whole space.l

If the direction of £flight is along the axis of the source
(x~axis), the flow wlll satisfy the boundary condition for a body
of revolution. However, if the line source is turned out to a
position oblique to the stream, the boundary shape will be distorted
and, if the angle of obliquity is large enough to place the line
source well outside the diameter of the original body, the figure

“The conical progsure field for either the subsonic or the super—
sonic line source mey be obtained directly from the general solu=
tions of Laplace's equations of zero degree in X,¥.,2 given by
W.F. Donkin. (See reference 2, page 357.) The general solution is

q = f ¥ xiz )
x+a/ x2+y2+22
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Formed will be an oblique wedge. The nose angle of the wedge is
formed where the streamliines of the main flow cross the line source.

At supersonlc speeds the expression for the obligue line source
was obtalned by applying an squivalent of the Lorentz transformation
for which the wave squation 1s invariant. The equivalent trane—
FTormation for Laplace's equation 1s a rotation of the axes, given by

xt = x + my
y' =y —mx

z! = o1 +m® 2

where m 4is the slope of the new axes relative to the old. (Note

that a change of scale is admitted for convenience.) The geometry

of the pressure field relative to the line source is not altered in
any way by this rotation and the lsobars behave as though they wers
rigidly attached to the ends of the source., For a line source with
one end at the origin we have

u = sinh™? X (5)

(gt B(z1)2

This field is 1llustrated in figure 2 for the plane z = 0., Aa
m—> o the X~ and y-axss interchange and there is obtained

= -1 —-—-—L— 6
u = einh == (6)

for a liné source slong y.

See footnote 1, pg. 3.

The solution corresponding to the subsonic line source is

+1z -1 X
u=-—R.P. 1o = gink
& x;J x2+y§+z2 ;Zy2+z2

vhile the filsld for the supersonic source 1s glven by

y+iz = cosh—l X

x+yf Xo—y oz 2 NErr

u = - R,P. log
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The vertical veloclty w near 2z = 0, which determines the
shape of the boundary, may be found by integrating u with respect
to x and then differentiating the resulting velocity _poten'bial
with respect to =

.3 B
“=az=§E/_‘mud" (7)

Evaluation of this integral for the overlapping fislds from two
ends of a line source gives

.'W' = ien: EZ (8)

over the area of the x, y plane behind the line source.

The figure formed by the streamlines crossing a line source is
thus a wedge-—sha:oed. body having an oblique leading edge and extending
indefinitely downstream. It 1s evident from equation (3) that the
infinitely wide wedge cannot be treated in subsonic flow, since it
creates an infinite pressure disturbance at all polnts.

The slope of the wedge surface away from the chord plane 1is
given by .

Z.x (9) ‘

With this relation and equation (8) the pressure coefficient near
the plane z = 0 may be expressed in terms of the slope

&P _ L In L -l xl=b! __ —2 X'—n!
e - xJTmT ax ginh ]y'} sinh |Y'l (10)

where |y!| indicates the absolute magnitude of y'. Following the
thin-airfoll theory, the pressure over the chord plane (z-—=>0) 1is
taken as the pressure oveér the actual airfoil surface.
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ATRFOILS BOUNDED BY PLANE SURFACES

It was seen that the effect of a line source in the pressure
field 1s to cause a deflection of the streamlines crossing the source.
The deflection thus produced ls equal snd opposite at pointe above
and below tho chord pleng sothat the source spreads the streamlines
spart. If the smource is followed by a sink of equal strength, an
equel opposite deflection of the streamlines will occur as they
cross over the sink. The figure formed by the streamlines near the
plane 2z = 0 will thus be & plate of uniform thickness with a
beveled leading ndge.€ (See fig. 3)

The pressurc digtribution over such a beveled edge may be
cbtained very simply by superimposing the pressures laid off on
radial isobars originabing from the four corners of the bevel.
Figure 3 illustratos this process for a bevel having a square plan
form. Only iscbars from one tip are shown because of the symmetry
of the figure.

In figurs 3 the line mource and the line sink are parallel to
the y-axls, hence

u = sink~t -!i-:}-—l - sinh‘l-l-i’-;%l- - sinh—l—]jzcﬁ—{ + giph™? ﬁ:—'_-}_—!- (11)

It can be scon that I1f the aspect retio of the figure 1s iIncreascd
to a large values tho ends of the line sources will be separated by
a great distance and the iecbars in intermediate reglons will
approach parallel straight lines, hence the flow fleld approaches
a cylindrical or two-dimensional form. AV the same time the
arguments yil/|x+1] in equation (11) become yin/xtl and 7
takos on very large values so that

-1 YN o JE0
ginh [xil! —> + log ‘Xﬂi

2According to the thin-airfoil theory the thickness of the figure
ends abruptly at the ends of the source lines. A more exact
consideration would be expected to show some rounding at the tips
of the wedge as Indicated in figure 3.
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and equation (11) is found to approach the Legendre function Qo,
that is

u =2 log x:;

x—a} = =1 Q (x) (22)

(8ec roference 3, pg. 110.)}

This expression when combined with equation (8) agrecs with the two—
dimensional potential functlion for the wedge, that is,

- (u-iw) = ¥ 65 (x)z2ni Py (%) (13)
{See fig. k.)

The iscbers at right angles to the axis of the line source are
lines of zero pressure, hence the rays originating at the tip of a
rectangular wing contribute nothing to the pressure distribution at
this tip. The whole pressure distribution at one tip is thus obtained
by considering only thoge isobars radiating from the opposite tip.

It is evident that in the case of a long narrow vectangular wing
the pressures at either tip will be approximetely one-helf the
pressures over the middle portion of the wing.

In case the wing is obligue the tip sectlions will no longer
be at right angles tc the axss of the source lines and the rays
originating from the adjacent ends of the source lines will contri-
bute to the pressure over the tip. It can be shown that this compo—
nent of the tip pressure distribubtion is similar in form to the
Ackeret type of distribution, that is, the pressure at any point
of the surface is proportiomal to the slope of the surface at that
point.

Consider first the slopling surface formed by = palr of obligue
source—sink lines. The tip section lies along the lines of constant
pressure of magnitude proportional to sinh™2 1/m. Between the
source and sink the pressures are additive, so that )

_2 _=m - i
;&_ 2 4z ginn—1 2 )

Ahead of or behind this section the pressures cancel.
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In case of a curved airfoll surface the chord can be divided
into elements composed of source—sink pairs the strengths of which
are proportional to the slope of the surface at the point in question.
Bach palr then contributes a pressure proportional to the locel slope
and contributes no pressure at other points. Hence, equation (1¥%)
applies when dz/dx is variable along the chord.

The foregoing arguments of course apply only at the tip
gsection of the obligue wing. At scme distance from the tip section
the overlapping lsobars radiating from the tlip again produce a
quasi-cylindrical pressure field as in the case of the rectangular
wing. Thus the resultent pressure distribution at either tip of a
long oblique wing consiets of two components, one glven by equatlion
(14) and of the Ackeret type while the other component 1s equal to
one-half the normal two-dimensional pressure digtribution assoclated
with the airfoil section.

Figure 5 shows the pressuves over & beveled—edge profile

having %5° swespback. The pressure distribution over the root
section 1s given by :

—4 ' -

at a great distence from either root or tip by

fp .=k _m 4z

and at the tip by

da

®2-F = 5 [Q" (x) + stn™ %PO (x)] o

To take account of the effect of compressibility we make uee
of the Prandtl transformation, increasing both the X dJdimenslons

and the pressure coefficients by the factor :JlFME. Replacing m

by IMZ cot A, where A is the angle of sweepback, equation
(16) reduces to
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&0 . 1 dz
0/2(V cos A)2 r Trem ) iz o n) P & (18)

Thus at a great distance from either root or tip the pressures follow
a variatlon indicated by the mormal component of wvelocity V cos A.

At the root section a compenent representing the Ackeret type
of pressure distribution is added to sguation (18). This component
is : :

L dz -1 1
P TR e O e W 09

The factor sinll —=————a—— shows a logorithmic infinity at
Jl_—M—2 cos A

M = 1.0. Hencse the preossure on the root section increases more

repidly with Mach number than dc the pressures at other soctilons

of the swepit-back wing. Furthermore, the shape of the pressure

distribution over the root section approaches the Ackeret shapoc

more closely as the Mach number approaches 1.0. As shown in

reference 1 the pressure distribution on the root section is exactly

this shape at supsrscnic speeds, that is,

B El'_ — _d7 cosh“"<T=L—)Pc (x)
a cos2 A X /1M cos A)2 a(x cos A) M2-1 cos A
. (20)

Since sinh™r —» cosh—* for large values of the argument, the
swept—back airfoil shows no disconbtinuity in the type of pressure
distribution on passing through the speed of sound. It will be
evident that simller reasoning can be applied to the tip sections.

AIRFOIL, OF BICONVEX SECTION

The use of a finlte number of sources and sinks results in
alrfoll sectlons composed of straight segments. Such sections are
undesirable, since they show infinite pressure peeks at the bends
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in the surface. Surfaces having continuous curvature require
continuous distribution of sourcee and sinks alined with the generators
of the surface. The simplest of these 1s the biconvex profile in
which the upper and lower surfaces are parabolic arcs and have

congtant curvature. Such a profile requires line sources of Ffinite
strength to form the desired angles of intersection of the arcs at

the loading and trailing edges together with a uniform distribution

of sinks along the chord plane betwoen the two sources.

Tho prossuro flold for a uniform sheet of lino sources is
obtained by integrating tho field of a single line source in the x
direction. This integral is

% u =fsinh_l -ﬁ;—:—T dx = @ ¥ Sinh"'lﬁi- ";1‘1; ! Sinh—lﬁ:—r (21)

The integration for a source sheet is actually somewhat simpler if
the interference of a bilaterally symmetrical arrangemont of sourcos
is considored simultansously. The influence of the symmetrical, or
conjugate, arrangement is obtained by substituting -m for m in
oquation (21). Donoting x-my by X' and y+#mx by ¥' we have

1 -
= o+
5 (u+)

/ (sinh—l t—yﬁ + ginh™t F}%’—)d.x

3 (7 s oyt o ) (22)

To obtaln a complete swopt-back wing it is necessary to add
8 number of component pressure fislds as oxplained in reference 1.
For an infinite swopt-back wing with leading ond trailing cdgos at
y' =+m and -m, vrespectively, on onc slde, and at F' = m
and. -m, vrespectively, on the other side, thore is obtained

& _2__m /% ¥ — _xf4l - gl
3 x s \c l-m sinh Txr_[y—-m ainh .}Llry‘m
¥ -2 _X'—1 -1 X'+
+ n sinh 'l—?—,—__il- glinh -T%-‘—H%T

req <m3’—’)+2ql (%’)] - (@
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where (%) is the thicknoss—chord ratio of the biconvex profile.

The torms Q;_ QLP represent the pressure distrlbution on the

biconvex airfoll two-dimensional flow. The appearence of these
terms 1s the result of the assumption that the tips aré removed to
a great distance.

At the root section (¥ = 0} equation (23) reduces to

Q2
q

3t

(—})mu [u Q1 (x) — &4 sinn™2 %Pl (x)] (21;)'

Figure 6 shows proasure distributions at verious stations along
the span for a biconvex wing with 60° swoepback. The curves agsums
the two—dimensional form at & relatively short distance (y 2 % c)
from the root section, and similax bohaviocr ls to be expscted near
the tips. Honce the assuwmption.of infinite aspect ratio should
apply very neerly at any section situated more than ons—helf chord
length from either rootv or wip.

Figurs T shows the offect of Mach number on the pressures
over the root section and illustrates the progressgive change to the
guporsonic type as the Mach numbor approaches 1.0. It can be seen
that an increase in Mach mumber will not only increase the distor—
tion of the pressure distribution but will increa.se the ex‘bent of
the distortion along the span.

An interesting point to be noted is that not all sections of
the swopt-back wing have zero pressure drag. A poslitive drag appears
on the root sections and a negative drag on the tip sections. Hoence
the spanwise drag distribution is qualitabively similar to that at
suporsonic speods though, of course, the net subsonlc pressure drag
ig zero.

Ames Acroneuticel L-a.bora.tor,y',
National Advisory Cammittee for Aeronautics,
Moffett Field, Calif., May 19h47.
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APPENDIX
Symbols

£light velocity -
Mach number
coordinates
point on x-exis
point on y-exls
disturbance, veloclty potential
disturbence velocity components
local pressure
dynamic prossure (%oVe)
alr demsity
Logendre functions
differential operator (d/dx)
thicknoss of wing
chord of wing (moasured along x)
slope of line source (zbsolute value)
X + my
y — mx
X —ny
¥y + mx

Real part

-
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